Application of Ica Technique to Pca Based Radar Target Recognition
نویسندگان
چکیده
In this paper, the ICA (independent component analysis) technique is applied to PCA (principal component analysis) based radar target recognition. The goal is to identify the similarity between the unknown and known targets. The RCS (radar cross section) signals are collected and then processed to serve as the features for target recognition. Initially, the RCS data from targets are collected by angular-diversity technique, i.e., are observed in directions of different elevation and azimuth angles. These RCS data are first processed by the PCA technique to reduce noise, and then further processed by the ICA technique for reliable discrimination. Finally, the identification of targets will be performed by comparing features in the ICA space. The noise effects are also taken into consideration in this study. Simulation results show that the recognition scheme with ICA processing has better ability to discriminate features and to tolerate noises than those without ICA processing. The ICA technique is inherently an approach of high-order statistics and can extract much important information about radar target recognition. This property will make the proposed recognition scheme accurate and reliable. This study will be helpful to many applications of radar target recognition.
منابع مشابه
Performance Evaluation of Iris Based Recognition System Implementing PCA and ICA Encoding Techniques
In this paper, we describe and analyze the performance of two iris-encoding techniques. The first technique is based on Principle Component Analysis (PCA) encoding method while the second technique is a combination of Principal Component Analysis with Independent Component Analysis (ICA) following it. Both techniques are applied globally. PCA and ICA are two well known methods used to process a...
متن کاملRadar HRRP Modeling using Dynamic System for Radar Target Recognition
High resolution range profile (HRRP) is being known as one of the most powerful tools for radar target recognition. The main problem with range profile for radar target recognition is its sensitivity to aspect angle. To overcome this problem, consecutive samples of HRRP were assumed to be identically independently distributed (IID) in small frames of aspect angles in most of the related works. ...
متن کاملComparative Analysis of Dimension Reduction Techniques for Classification of Radar Returns from Ionosphere Using a Model Based on Machine Learning Technique
Advances in technology have immensely increased data collection and storage capabilities during the past decades. This progression has overloaded many science fields with huge amount of raw data. Scientists and researchers working in domains as diverse as engineering, medicine, economics etc are facing problems handling and performing analysis on the large database gathered from different resou...
متن کاملGeneral Linear Chirplet Transform and Radar Target Classification
In this paper, we design an attractivealgorithm aiming to classify moving targets includinghuman, animal, vehicle and drone, at groundsurveillance radar systems. The non-stationary reflectedsignal of the targets is represented with a novelmathematical framework based on behavior of thesignal components in reality. We further propose usingthe generalized linear chirp transform for the analysisst...
متن کاملComparison of Region Based and Weighted Principal Component Analysis and Locally Salient ICA in Terms of Facial Expression Recognition
With the increasing applications of computing systems, recognizing accurate and application oriented human expressions, is becoming a challenging topic. The face is a highly attractive biometric trait for expression recognition because of its physiological structure and location. In this paper we proposed two different subspace projection methods that are the extensions of basis subspace projec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010